Research | Our younger experts

Electron spin wave for new information carriers

Detail

We are currently working on helical spin wave to efficiently transfer spin information for a long distance as well as to manipulate spin states without external magnetic fields and magnetic materials. The Key ingredient for the future spintronics and quantum/topological information technology is the effective magnetic field induced by the spin orbit interaction in III-V based semiconductor heterostructures. We also focus on metal spintronics toward efficient magnetization reversal by using spin-orbit induced spin current. Since spin-orbit interaction both in semiconductors and metals plays a critical role for quantum information, neuromorphic / cognitive computing, low-energy consumption memory / LSI as well as AI and IoT devices, we focus on the fundamental physics and device application on spin-orbit interaction for future our society.

  • Makoto Kohda, Associate Professor, Department of Materials Science, Tohoku UniversityContact
  • Michael Kammermeier, Postdoctoral Research Fellow, School of Chemical and Physical Sciences, Victoria University of Wellington
  • Ulrich Zülicke, Professor, School of Chemical and Physical Sciences, Victoria University of Wellington
  • Liza Herrera Diez, CNRS Researcher, Centre for Nanoscience and Nanotechnology and CNRS- Université Paris Sud - Université Paris Saclay

Videos

Electronic spin polarization in semiconductor nanostructures
Spin manipulation by spin-momentum locking in Rashba two-dimensional systems

Publications

1 D. Iizasa, M. Kohda, U. Zülicke, J. Nitta and M. Kammermeir,“Enhanced longevity of the spin helix in low-symmetry quantum wells”Physical Review B 101, 245417 (2020).
2 H. Sanada, A. M. Stramma, Y. Kunihashi, Y. Tanaka, H. Gotoh, K. Onomitsu, F. Tagarelli, M. Kohda, J. Nitta, and T. Sogawa “Spin accumulation in photo-induced potential dimples generated in semiconductors” Communications Physics 3, 11 (2020).
3 H. Gamou, K. Shimose, R. Enoki, E. Minamitani, A. Shiotari, Y. Kotani, K. Toyoki, T. Nakamura, Y. Sugimoto, M. Kohda, J. Nitta, and S. Miwa “Detection of Spin Transfer from Metal to Molecule by Magnetoresistance Measurement” Nano Letters 20, 75-80 (2020).
4 K. Kawaguchi, T. Fukasawa, I. Takazawa, H. Shida, Y. Saito, D. Iizasa, T. Saito, T. Kitada, Y. Ishitani, M. Kohda, and K. Morita “Transient diffusive spin dynamics in intrinsic InGaAs/InAlAs multiple quantum wells” Applied Physics Letters 115, 172406 (2019).
5 T. Saito, A. Aoki, J. Nitta, and M. Kohda “Simultaneous evaluation of drift- and diffusion-induced spin-orbit fields in a (001) GaAs/AlGaAs two-dimensional electron gas” Applied Physics Letters 115, 052402 (2019).
6 K. Morita, A. Okumura, H. Takaiwa, I. Takazawa, T. Oda, T. Kitada, M. Kohda, and Y. Ishitani “Temperature and laser energy dependence of the electron g-factor in intrinsic InGaAs/InAlAs multiple quantum wells” Applied Physics Letters 115, 012404 (2019).
7 E. Asakura, M. Suzuki, S. Karube, J. Nitta, K. Nagashio and M. Kohda “Detection of both optical polarization and coherence transfers to excitonic valley states in CVD-grown monolayer MoS2” Applied Physics Express 12, 063005 (2019).
8 H. Gamou, Y. Du, M. Kohda, and J. Nitta “Enhancement of spin current generation in epitaxial a-Ta/CoFeB bilayer” Physical Review B 99, 184408 (2019).
9 M. Kohda, T. Okayasu and J. Nitta “Spin-momentum locked spin manipulation in a two-dimensional Rashba system” Scientific Reports 9, 1909-1-1909-9 (2019).
10 J. Ryu, C. O. Avci, S. Karube, M. Kohda, G. S. D. Beach, and J. Nitta “Crystal orientation dependence of spin-orbit torques in Co/Pt bilayers” Applied Physics Letters 114, 142402 (2019).
11 Y. Tanaka, Y. Kunihashi, H. Sanada, H. Gotoh, K. Onomitsu, M. Kohda, J. Nitta, and T. Sogawa “Phase velocity of drifting spin wave packets in semiconductor two dimensional electron gas” Applied Physics Express 12, 013001 (2019).
12 D Iizasa, D. Sato, K. Morita, J. Nitta, and M. Kohda “Robustness of a persistent spin helix against a cubic Dresselhaus field in (001) and (110) oriented two-dimensional electron gases” Physical Review B 98, 165112-1-165112-9 (2018).
13 Y. Kunihashi, H. Sanada, Y. Tanaka, H. Gotoh, K. Onomitsu, K. Nakagawara, M. Kohda, J. Nitta, and T. Sogawa “Drift-induced enhancement of cubic Dresselhaus spin-orbit interaction in a two-dimensional electron gas” Physical Review Letters 119, 187703-1-187703-5 (2018).
14 S. Takasuna, J. Shiogai, S. Matsuzaka, M. Kohda, Y. Oyama,and J. Nitta “Weak antilocalization induced by Rashba spin-orbit interaction in layered III-VI compound semiconductor GaSe thin films” Physical Review B Rapid Communications 96, 161303(R)-1-161303(R)-6 (2017).
15 M. Kohda and G. Salis “Physics and application of persistent spin helix state in semiconductor nanostructures” Semiconductor Science and Technology 32, 073002-1-073002-24 (2017).
16 J-C. Ryu, M. Kohda, and J. Nitta “Observation of the D’yakonov-Perel’ Spin Relaxation in Single-Crystalline Pt Thin Films” Physical Review Letters 116, 256802-1-256802-6 (2016).
17 Y. Kunihashi, H. Sanada, H. Gotoh, K. Onomitsu, M. Kohda, J. Nitta, and T. Sogawa “Drift transport of helical spin coherence with tailored spin-orbit interactions” Nature Communications 7, 10722 (2016).
18 P. Altmann, M. Kohda, C. Reichl, W. Wegscheider, and G. Salis “Transition of a two-dimensional spin mode to a helical state by lateral confinement” Physical Review B 92, 235304-1-235304-6 (2015).
19 R. Kurosawa, K. Morita, M. Kohda, and Y. Ishitani “Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells” Applied Physics Letters 107, 182103-1-182103-5 (2015).
20 M. Kohda, P. Altmann, D. Schuh, S. D. Ganichev, W. Wegscheider, and G. Salis “All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a 2D electron gas” Applied Physics Letters 107, 172402-1-172402-4 (2015).
21 J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, D. Bougeard, T. Nojima, D. Weiss, and J. Nitta “In-plane tunneling anisotropic magnetoresistance in (Ga,Mn)As/GaAs Esaki diodes in the regime of the excess current” Applied Physics Letters 106, 262402-1-262402-5 (2015).
22 T. Arakawa, J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, J. Nitta, D. Bougeard, D. Weiss, T. Ono, and K. Kobayashi “Shot Noise Induced by Nonequilibrium Spin Accumulation” Physical Review Letters 114, 016601-1-016601-5 (2015).
23 A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind, T. Dollinger, K. Richter, and J. Nitta “Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry” Nature Nanotechnology 13, 703-709 (2014).
24 J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, D. Bougeard, T. Nojima, J. Nitta, and D. Weiss “Giant enhancement of spin detection sensitivity in (Ga,Mn)As/GaAs Esaki diodes” Physical Review B Rapid Communication 89, 081307-1-081307-5 (2014).
25 H. Sanada, Y. Kunihashi, H. Gotoh, K. Onomitsu, M. Kohda, J. Nitta, P. V. Santos, and T. Sogawa “Manipulation of mobile spin coherence using magnetic-field-free electron spin resonance” Nature Physics 9, 280-283 (2013).
26 M. Kohda, S. Nakamura, Y. Nishihara, K. Kobayashi, T. Ono, J. Ohe, Y. Tokura, T. Mineno, and J. Nitta “Spin orbit induced electronic spin separation in semiconductor nanostructures” Nature Communications 3, 1082-1-1082-8 (2012).
27 M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich, C. Schönhuber, I. Caspers, V. V. Bel’kov, L. E. Golub, D. Weiss, K. Richter, J. Nitta, and S. D. Ganichev “Gate-controlled persistent spin helix state in (In,Ga)As quantum wells” Physical Review B Rapid Communication 86, 081306-1-081306-6 (2012).

Special Interview

“Our future lies in new discoveries” Learning from great teachers to be a world changing researcher.

Research

Research