Twenty-four students are admitted per year into the three course groups (eight students for each course group). Lectures in English are arranged in various areas of concentration. Research supervision may be in English or Japanese depending on a student’s language ability. Students may also attend lectures given in Japanese to fulfill their requirements.

<table>
<thead>
<tr>
<th>Departments</th>
<th>Departments</th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Finemechanics</td>
<td>12. Biomolecular Engineering</td>
<td>Mathematical Sciences</td>
</tr>
<tr>
<td>Engineering</td>
<td>16. Civil and</td>
<td>23. Environmental Studies for</td>
</tr>
<tr>
<td>6. Electrical Engineering</td>
<td>Environmental Engineering</td>
<td>Advanced Society</td>
</tr>
<tr>
<td>8. Electronic Engineering</td>
<td>18. Management Science and</td>
<td></td>
</tr>
<tr>
<td>9. Applied Physics</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>10. Applied Chemistry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students should also choose one from the following course groups (A-C):
- Group A: Life Science
- Group B: Green Innovation
- Group C: Safety and Security

DEGREE REQUIREMENTS

It depends on the rules of each Graduate School.

Students should complete the necessary credits according to degree requirements given by the department where they belong.

Example: Graduate School of Engineering (for students in the departments 1 through 18)

The main requirements for Ph.D. degree are (1) three years of residency, which may be shortened for special cases in which outstanding research performance is demonstrated; (2) successful completion of a minimum of 16 credits (3) submission of a Doctoral dissertation; and (4) oral defense of the dissertation.

Note that students should complete 2 or more credits of subjects provided by the course group (A/B/C) they chose, preferably by the department where they belong.

修了要件

各研究科の規程による。
修了するために必要な単位は、所属する専攻で定められている修了要件に従って修得しなければならない。

（例：工学研究科 1～18の専攻）

博士課程を修了するためには、後期課程に3年以上在学し、学際基盤科目、専門科目及び関連科目の単位数を合わせて16単位以上、かつ、必要な研究指導を受け、博士論文の審査及び最終試験に合格しなければならない。ただし、在学期間に関しては、本研究科委員会が別に定めるとこより、優れた研究業績を上げた者を認めた場合には、1年以上在学すれば足りるものとする。

また、所属するA～Cコースグループの授業科目を1科目2単位（指導教員の所属する専攻が開講する授業科目が望ましい。）以上選択履修すること。
Numbers in parentheses “()” refer to departments offering the courses listed in page 1.

Group A: Life Science
(6)(25) Advanced Bioelectromagnetics (生体電磁工学特論／電気工学), to be determined
(19) Advanced Topics in Neuroscience (神経科学の進歩／情報), 1st Semester, 2018
(5)(25) Advanced Bio-Mechanics (バイオメカニクス特論／ロボ, 医工学), 2nd Semester, 2018
(12) Advanced Biomolecular Engineering (応用生命化学特論／パ工), July and/or August, 2018
(16) Advanced Environmental Hydraulics and Water Quality Engineering (水環境学特論／土木),
 July and/or August, 2019(Every other year)
(4) Medical Molecular Engineering (分子医工学／量子), February and/or March, 2018

Group B: Green Innovation
(9) Quantum Material Physics (量子材料物理／応物), to be determined
(11) Advanced Process Analysis and Modeling (プロセス解析工学特論／化工), July and/or August, 2020
(17) CFD modeling for building environment design （建築環境デザインのための CFD モデリング／建築）,
 April to July, 2018
(18) Advanced Energy Systems and Society (エネルギー社会システム特論／技術),
 October, 2017 to February, 2018
(24) Advanced Eco-engineering Systems (環境物性化学特論／先端), August, 2018
(24) Advanced surface and subsurface measurements for environmental science (地球環境計測学特論／先端),
 August, 2019
(23) Advanced Studies on International Resource Strategy （国際資源戦略学特論／先進）, August, 2020
(10) Advanced Course in Atoms and Molecules Control Engineering (原子・分子制御工学特論／応化),
 July and/or August, 2019
(13) Advanced Course on Materials Physical Chemistry (材料物理化学特論／金フ), July and/or August, 2019
(14) Advanced Topics on Highly Sophisticated Materials (物性制御学特論／知材), July and/or August, 2019
(14) Advanced Topics on High Performance Materials (高機能材料学特論／知材), July and/or August, 2019

Group C: Safety and Security
(3) Shock Wave in Complex Media and their Interdisciplinary Applications
 （複雑な媒体中の衝撃波とその応用／航空）, July and/or August, 2018
(16) Advanced Civil Engineering Structures (社会基盤構造学特論／土木),
 July and/or August, 2018(Every other year)
(1)(2) Advanced Damage Tolerance and Design (損傷計測学特論／機械創成, ファイン), July and/or August, 2018
(7)(8) Advanced High-Speed Communication Engineering (先端超高速情報工学／通信, 電子),
 April to September, 2018
(13) Metallurgical Process Engineering (金属プロセス工学特論／金フ), July and/or August, 2018
(4) Advanced Quantum Science and Energy Engineering (量子エネルギー工学特論／量子),
 August and/or September, 2019
(8) Advanced Electronic Device Engineering (電子デバイス工学特論／電子), July and/or August, 2017
(15) Advanced Materials Processing (材料システム工学特論／材シ), July and/or August, 2019
(17) Geological Environment and Earthquake Disaster (地盤環境と地震災害／建築), July and/or August, 2019

Note: Please refer to “DEGREE REQUIREMENTS” in the previous pages.
International Doctoral Program in Engineering, Information Sciences, Environmental Studies and Biomedical Engineering Syllabus
for 2017 - 2019 COURSE GROUPS

Group A: Life Science

| Name of Department: Department of Electrical Engineering and Department of Biomedical Engineering | Advanced Bioelectromagnetics |
| Schedule: to be determined | Instructors: to be determined |
| Lecture: This lecture will deal with various aspects of bioelectromagnetics from basic knowledge to advanced subjects. Focus will be placed on overview of the health effects problem and on topics of biological effects and medical applications of electromagnetic fields and waves. Safety standards will be discussed. |

| Name of Department: Graduate School of Information Sciences | Advanced Topics in Neuroscience |
| Lecture: Neuroscience has made a remarkable progress owing to the development of molecular biology and genome science. This lecture will present some recent progress on neuroscience with the emphasis on neuroendocrinology. It will give an introduction of neuroendocrinology, neurophysiology, molecular engineering, and related neurological disorders. Possibly the lecture will have problem and solution session in which students should solve some exercises. |

| Name of Department: Department of Robotics and Department of Biomedical Engineering | Advanced Bio-Mechanics |
| Schedule: 2nd Semester, 2018 | Instructors: Professors Yoichi Haga, Takuji Ishikawa, Makoto Ohta, Associate Professors Makoto Kanzaki |
| Lecture: This course covers various aspects of biomechanics from basic knowledge to advanced subjects. Focus will be placed on several topics such as fluidics of blood and air, sensory systems, mechanics of soft and hard tissue. |

| Name of Department: Department of Biomolecular Engineering | Advanced Biomolecular Engineering |
| Schedule: July and/or August, 2018 | Instructors: Professors Toru Nakayama, Shin-ichiro Shoda, Tetsutarou Hattori, Nobuyuki Uozumi, Mitsuo Umetsu, Hitoshi Kasai |
| Lecture: This lecture will deal with various aspects of biomolecular engineering from basic knowledge to advanced subjects. Focus will be placed on several topics of biosensing technologies, biomolecular recognition, biochemistry of flavonoids, chemical biology of carbohydrates, bioenergetics, protein engineering of immunological receptors. |

| Name of Department: Department of Civil and Environmental Engineering | Advanced Environmental Hydraulics and Water Quality Engineering |
| Schedule: July and/or August, 2019 (Every other year) | Instructors: Professors Hitoshi Tanaka, Fumihiko Imamura, Osamu Nishimura, So Kazama, Shunichi Koshimura, Associate Professors Makoto Umeda, Keiko Udo, Kengo Kubota, Suppasri Anawat, Takashi Sakamaki, Mas Erick |
| Lecture: This lecture will deal with various aspects of environmental hydraulics and water quality engineering from basic knowledge to advanced subjects. Focus will be placed on several topics such as remote-sensing technique, estuarine hydrodynamics, environmental protection engineering and water quality management. |

| Name of Department: Department of Quantum Science and Energy Engineering | Medical Molecular Engineering |
| Schedule: February and/or March, 2018 | Instructors: Professor Atsuki Terakawa |
Group B: Green Innovation

Name of Department: Department of Applied Physics
Name of Lecture: Quantum Material Physics
Schedule: to be determined
Instructors: Professors Yasuo Ando, Takumi Fujiwara, Yuzuru Miyazaki, Takashi Matsuoka

Lecture: This course is composed of four topics: Ceramics conductors; Materials science and device applications of wide-gap semiconductors; Spintronics; Fabrication and nonlinear optical study of crystallized glass with laser-induced nanostructures.

The first part of the course focuses on exotic features of synthesized electrical conducting ceramics i.e. the superconductivity, significant thermoelectric power, colossal magnetoresistance and photoconductivity. Their common and characteristic crystal structures will also be discussed in terms of point groups and space groups.

The next part of the course aims to give a comprehensive review of materials and devices of narrow- and wide-gap semiconductors, ranging from basic materials science to advanced optical device applications. The materials to be discussed will include conventional III-V and group III nitride semiconductors.

The third part of this course gives a review of recent development of spintronics. Various kinds of magnetoresistance effects such as giant magnetoresistance (GMR) effect and tunnel magnetoresistance (TMR) effect will be explained in detail. Applications of such effects to electronic devices will also be presented.

The final part of the course describes the controlling light with nonlinear optical materials and photonic glasses. Fabrication of nano-crystallized glass with laser-induced ordered structures and their photonic applications such as the novel electro-optic fiber-type devices and localization/propagation of light in photonic glasses will be introduced.

Name of Department: Department of Chemical Engineering
Name of Lecture: Advanced Process Analysis and Modeling
Schedule: July and/or August, 2020
Instructors: Professors Hideyuki Aoki, Daisuke Nagao, Takao Tsukada, Hiroshi Inomata, Masato Kakihama, Chiaki Yokoyama, Tadafumi Ajiri

Lecture: This course is designed to provide Ph.D. graduate students with guidance and experience in analysis and modeling of chemical processes such as energy processes, separation and/or reaction processes and large-scale chemical process systems.

Name of Department: Department of Architectural & Building Science
Name of Lecture: CFD modeling for building environment design
Schedule: April to July, 2018
Instructors: Professor Akashi Mochida

Lecture: Turbulent diffusion strongly influences the wind environment in urban area, wind loading on structure, thermal environment and air quality in and around buildings. An introduction is given to CFD simulations of airflow related phenomena in and around buildings using various turbulence models, namely standard and revised k-ε models, ASM, DSM and LES. Canopy flow modeling for reproducing aerodynamic effects of flow obstacles whose sizes are smaller than computational grid cell is also introduced. Emphasizes are placed on the performance of these models and the essentials of modeling techniques when they are applied to complex flow-fields related to built environment. Furthermore, the way how the turbulent flow simulations can be utilized for environmental design is also provided.

Name of Department: Department of Management Science and Technology
Name of Lecture: Advanced Energy Systems and Society
Schedule: October, 2017 to February, 2018
Instructors: Professor Toshihiko Nakata

Lecture: Efficient energy utilization is an essential solution to mitigate global warming. The various aspects of energy system are defined and discussed. In particular, social and economic dimension of energy policy are stressed. The class will give energy efficiency, renewables, distributed energy systems, engineering economics, environmental taxes, environmental management etc. Active participation in class will be appreciated.

Name of Department: Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies
Name of Lecture: Advanced Eco-engineering Systems
Schedule: August, 2018
Instructors: Professors SMITH Richard Lee Jr, Hideaki Matsubara, Associate Professors Hitoshi Shiku, Koichi Suto

Lecture: This lecture includes subjects concerning on chemical and physical properties of materials for environmental industry, chemical engineering process toward environmental load reduction, basics and applications of supercritical fluid. Topics will be selected from the backgrounds including material science, physical chemistry, and chemical engineering. Students will learn expert knowledge of individual topics and find out problems to be solved.
Name of Department: Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies
Name of Lecture: Advanced surface and subsurface measurements for environmental science
Schedule: August, 2019
Instructors: Professors Motoyuki Sato
Lecture: In this course, applications of electromagnetic wave to environmental monitoring will be discussed. We will study Ground Penetrating Radar (GPR) technology and Synthetic Aperture Radar (SAR) technology and advanced electromagnetic sciences.

Name of Department: Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies
Name of Lecture: Advanced Studies on International Resource Strategy
Schedule: August, 2020
Instructors: Professors Noriyoshi Tsuchiya, Takeshi Komai, Toshinobu Machida
Lecture: Formation mechanisms and evolution of the Earth system, particularly atmosphere and geosphere, can be studied. Catastrophe and future estimation, environmental risk, health risk and risk management can be studied in this class.

Name of Department: Department of Applied Chemistry
Name of Lecture: Advanced Course in Atoms & Molecules Control Engineering
Schedule: July and/or August, 2019
Instructors: Professors Yuji Matsumoto, Keiichi Tomishige, Hitoshi Shiku, Hirotugu Takizawa, Keisuke Asai, Takashi Kyotani, Atsushi Muramatsu, Tomoyuki Akutagawa, Masaru Nakagawa, Masaya Mitsuishi, Hiroshi Jimnai
Lecture: This lecture will deal with various aspects of energy engineering from basic knowledge to advanced subjects. Focus will be placed on several topics of manipulation of atoms and molecules, recycling chemistry, hydrocarbon chemistry, electrochemical science and technology, inorganic reactions, reactions of solids, organic resources chemistry, physical recycling process engineering, chemical recycling process engineering, colloid chemistry, aqueous processing and environment protection technology.

Name of Department: Department of Metallurgy
Name of Lecture: Advanced Course on Materials Physical Chemistry
Schedule: July and/or August, 2019
Instructors: Professors Hongmin Zhu, Yoshitaka Kasukabe, Shigeru Suzuki
Lecture: This lecture deals with fundamental and applied physical chemistry based on the statistical mechanics, chemical thermodynamics, thermophysics, electrochemistry, X-ray scattering, high energy beam and surface treatment, and is focused on various materials such as molten metals and salts, high purity metals, semiconductors, metallic compounds, nano-materials, biomaterials, non-equilibrium materials, surface and interfaces.

Name of Department: Department of Materials Science
Name of Lecture: Advanced Topics on Highly Sophisticated Materials
Schedule: July and/or August, 2019
Instructors: Professors Junsaku Nitta, Junichi Koike, Kyosuke Yoshimi, Yutaka Oyama, Koki Takanashi, Kazumasa Sugiyama, Toyohiko Konno, Shunichi Sato, Hiroshi Ohtani
Lecture: This lecture will deal with various topics on highly sophisticated materials in the advanced fields of materials science, and will mainly be focused on several topics such as electronic and magnetic materials, optic materials, functional materials, superlattices, surface characterization, microstructural control.

Name of Department: Department of Materials Science
Name of Lecture: Advanced Topics on High Performance Materials
Schedule: July and/or August, 2019
Instructors: Professors Izumi Muto, Satoshi Sugimoto, Hitoshi Takamura, Atsushi Momose
Lecture: This lecture will deal with various aspects of high performance functional materials from basic knowledge to advanced subjects. They includes topics on structural materials, materials for information technologies (electronics, opto-electronics and spin-electronics), and materials for energy technologies. They contain metals, semiconductors and ceramics.
Group C: Safety and Security

<table>
<thead>
<tr>
<th>Name of Department: Department of Aerospace Engineering</th>
<th>Name of Lecture: Shock Wave in Complex Media and their Interdisciplinary Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule: July and/or August, 2018</td>
<td>Instructors: Associate Professor Mingyu Sun</td>
</tr>
</tbody>
</table>

Lecture: Shock waves in nature are of a wide range of length scales, such as gigantic shock waves in supernova explosions, and micro-shock waves induced by a tiny collapsing bubble. Mathematically, a discontinuous shock wave appears as a natural solution to the non-linear hyperbolic partial differential equations or the nonlinear wave equations, such as the compressible Euler equations in aerodynamics. Some behaviors of human society are analogous to shock waves, such as the propagation of rumor, panic motion etc. Encouraged by the remarkable development of computing and experimental techniques, the shock wave research today can extend its capabilities to various interdisciplinary topics that were hardly discussed before. Research results regarding various shock wave motions in complex media and then their interdisciplinary applications will be presented in this lecture. Examples will include geophysical applications such as volcanology, the effect of underwater shock waves created in asteroid impacts on the earth, mass extinction, physics of hypervelocity impacts, in addition to its traditional applications in aerodynamics.

<table>
<thead>
<tr>
<th>Name of Department: Department of Civil and Environmental Engineering</th>
<th>Name of Lecture: Advanced Civil Engineering Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule: July and/or August, 2018 (Every other year)</td>
<td>Instructors: Professors Kiyohiro Ikeda, Motoki Kazama, Takashi Kyoya, Makoto Hisada, Kenjiro Terada, Shigeki Unjoh, Associate Professors Yuki Yamakawa, Isao Saiki, Hiroshi Minagawa, Hideki Naito, Tadashi Kawai, Junji Kato, Shuji Moriguchi</td>
</tr>
</tbody>
</table>

Lecture: This lecture will deal with various aspects of civil engineering. Focus will be placed on topics of mathematical system design, civil engineering structures, regional system engineering, and infrastructural materials.

<table>
<thead>
<tr>
<th>Name of Department: Department of Mechanical Systems Engineering, Department of Finemechanics</th>
<th>Name of Lecture: Advanced Damage Tolerance and Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule: July and/or August, 2018</td>
<td>Instructors: Professors Masumi Saka and Hitoshi Soyama</td>
</tr>
</tbody>
</table>

Lecture: Lecture will deal with various aspects of design concepts and estimation of damage tolerance. Furthermore, to avoid various accident for aircraft, electric power plant and nuclear engineering, new concepts on the prediction of fracture life and the estimation of damage accumulation are discussed from the view points of advanced adaptive engineering. The contents of the lecture are as follows.
1. What is the system design?
2. Fundamental concept of fracture mechanics
3. The process of accident occurrence
4. Theory of fatigue crack growth, and the law of crack growth life
5. Theory of fatigue threshold
6. Evolution of design strategies for structural integrity
7. Damage tolerance concept and its application to aircraft industry
8. Three distinct elements in damage tolerance design (based on Boeing's concept);
 -Residual strength (allowable defect size)
 -Sub-critical crack growth
 -Damage detection (inspection program)
9. Introduction — Necessity of new approaches
10. Lessons from case studies
11. Foundation of design and evaluation of human-machine interface
12. Organizational accidents and process-oriented safety measures
13. Latent risk of computer-based systems
14. Self organization of biological tissue materials
15. Summary

<table>
<thead>
<tr>
<th>Name of Department: Department of Communication Engineering, Department of Electronic Engineering</th>
<th>Name of Lecture: Advanced High-Speed Communication Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule April to September, 2018</td>
<td>Instructors: Professors Hideo Ohno, Yasuo Cho, Masatake Nakazawa, Taiichi Otsuji, et al</td>
</tr>
</tbody>
</table>

Lecture: This series of lectures provide with various topics in the field of high-speed and high frequency communication engineering. Each lecture consists of a review and discussion in the areas of microwave, infrared, submillimeter wave, terahertz, acoustoelectronic, and quantum electronic engineering.
Name of Department: Department of Metallurgy
Name of Lecture: Metallurgical Process Engineering
Schedule: July and/or August, 2018
Instructors: Professors Tetsuya Nagasaka, Koichi Anzai, Ryosuke Kainuma, Shinya Kitamura, Tadashi Furuhara

Lecture: This lecture will deal with the process of material production. Focus will be placed on thermodynamics, physico-chemical properties, interfacial phenomena, solidification, material processing metallurgical processes, and the environmental problems related to the current processes.

Name of Department: Department of Quantum Science and Energy Engineering
Name of Lecture: Advanced Quantum Science and Energy Engineering
“Biotechnology and Advanced nuclear techniques, fundamentals and applications”
Schedule: August and/or September, 2019
Instructors: Professors Tomohiko Iwasaki

Lecture: This lecture will deal with the following topics.
1. The engineering and physics foundation, and innovative technologies of nuclear energy systems, safety systems, and recycling systems.
2. The engineering and physics foundation of advanced nuclear reactors, such as nuclear fusion and ADS.
3. The science and innovative technology for high loading energy.

Name of Department: Department of Electronic Engineering
Name of Lecture: Advanced Electronic Device Engineering
Schedule: July and/or August, 2017
Instructors: Professors Hiroshi Yasaka, Taichi Otsuji, Shigeo Sato, Associate Professors Shunsuke Fukami

Lecture: Various lectures on the advanced electronic devices for memories, data storage, communication, photo-electronics, semiconductor devices, etc. will be delivered. They include relevant fundamental theories and knowledge of material engineering, spintronics, magnetism, silicon technologies, photonics, and quantum electronic engineering.

Name of Department: Department of Materials Processing
Name of Lecture: Advanced Materials Processing
Schedule: July and/or August, 2019
Instructors: Professors Tsuyoshi Mihara, Akira Kawasaki, Takayuki Narushima, An Pang Tsai, Daisuke Shindo, Hisanori Yamane, Takashi Goto, Akihiko Chiba, Hiroshi Masumoto, Akira Yoshikawa

Lecture: The lecture deals with a wide range of materials processing from basic knowledge to advanced subjects. It is intensively focused on several topics of functions of material systems, applied elasticity and plasticity, numerical analysis of materials processing, structural characterization of materials, powder process technology, materials engineering in processing, evaluation of material systems, liquid state processing, and joining science and technology.

Name of Department: Department of Architectural & Building Science
Name of Lecture: Geological Environment and Earthquake Disaster
Schedule: July and/or August, 2019
Instructors: Professors Masato Motosaka, Associate Professors Susumu Ohno

Lecture: It is clear through past disastrous earthquakes that the earthquake damage is quite different due to the geological conditions. The earthquake observation explains this truth. It is important to take into account the difference of ground motion due to soil conditions in a seismic design of urban structures and in urban disaster prevention planning. In this course, the following topics are addressed.
1) Recent damage earthquakes and ground motion characteristics
2) Seismic wave propagation from source to building -phenomena and theory-
3) Geological structure and ground motion -ground motion amplification characteristics-
4) Earthquake resistant design/seismic diagnosis and soil conditions
5) Earthquake damage prediction in urban area -natural and social information-
6) Earthquake disaster prevention planning