令和2年度入学者

授業報目表授業要旨

金属フロンティア工学専攻

Department of Metallurgy

							11					1	
区人	授 業 科 目	開講時期	使用言語	単		位		担	当	教	員	備	考
分		. 3 \Q1	п нп	必修	選択 必修	選択							
専	製錬・精製の熱力学	毎年	JЕ		2		教 教 教 授 准 教 授 准 教 授 授 授 授 授 授 授 授 授 授 授	朱 植田 三木		金 多 金	元研 :属フロ ·元研 :属フロ ·元研	左記の専 10単位 30世優し 20世優し 30世紀 30世紀 30世紀 30世紀 30世紀 30世紀 30世紀 30世紀	ち上るないない。
	製錬・精製の速度論	毎年	JE		1		教 授 授 授	葛西	洋 栄輝 ' セルゲイ	環	·元研 境科学 属フロ	指導教 めた場合 4単位ま 科目を終 ることを	合には, で関連
門	材料表面界面科学	毎年	JE		2		教 授教 授教 授准教授	粕壁 和田	直哉 善隆 山智正 弘造	高学環	研 度教養教育• 生支援機構 環科学 元研	ことがを	
基	相変態論	毎年	JE		2		教 教 教 授 教 授 授 授 授 授	大谷 市坪	売介 博司 哲 俊洋	多 金	:属フロ ·元研 :研 :属フロ		
	量子化学	毎年	J		1		教 授	久保	百司	金	:研		
盤	材料電気化学	毎年	JE		2		教 教 授 准 教 授 准 教 授	集 竹田	泉民修優	金 金	l能材料 属フロ 属フロ l能材料		
科	疲労と破壊の材料学	毎年	Е		2		教 教 教 授	吉見	直之 享祐 毅	知	 能材料 料シス		
	格子欠陥論	毎年	Е		2		教 授 准教授		享祐 信彰		能材料 能材料		
目目	材料構造評価学	毎年	JE		1		教 授	今野	和正 豊彦 善太郎	金	·研 ·研 ·元研		
	固体電子論	毎年	JE		2		教 教 授 准教授	佐藤	淳作 俊一 誠	多	I能材料 ·元研 I能材料		
	結晶物理工学	毎年	JE		1		教 授 教 授	山根	仁 久典 彰	多	I能材料 ·元研 :研	左記の専及び関: (4単位以 ら10単位	連科目 (内)か 以上を
専	鉄鋼プロセス学	毎年	JE		1		教 授 教 授	柴田	洋 浩幸 滋	多	·元研 ·元研 ·元研	選択履修 と。但し 科目及び	するこ , 関連 門基盤 、専門科
門	非鉄金属プロセス学	毎年	JE		1		教 教 授 准教授	長坂	鴻民 徹也 修	金	:属フロ :属フロ :属フロ	目を合え 4単位ま 繰り入れ ができな	でしか しること
 科	応用構造材料学	毎年	JE		2		教 教 授 准 教 授 准 教 授	正橋 千星	忠 直哉 聡 吾郎	金 金	·研 ·研 ·研		
目	応用鋳造工学	毎年	JE		1		教 授 教 授		秀実 航三		:研 !学		
	応用腐食防食学	毎年	JE		1		教 授 准教授		泉優		I能材料 I能材料		
	応用塑性加工学	毎年	J		1		教 教 授		勝成 晶彦		:属フロ :研		

区	T25 7W 4/1 17	開講	使用	単		位			Liet .	N/c	-t/l -		<i>t</i> +11:	_
分	授業科目	時期	言語	必修	選択必修	選択		担当		当	教	員	備	∄
	応用粉体加工学	毎年	JE		1		教	授	野村	直之	材料	料シス		
	応用接合工学	毎年	JE		1		教	授	佐藤	裕	材料	料シス		
	数値材料プロセス学	毎年	JE		2		教教	授授	埜上 コマロフ	洋 セルゲイ		元研 属フロ		
	弾塑性力学	毎年	JE		1		教	授	成田	史生	環境	境科学		
	計算材料学	毎年	JE		1			授 授 授 授 授	久保 大谷 Rodion B 鈴木	百司 博司 elosludov 通人	多 金	元研 研		
	エネルギー変換・機能材料学	毎年	JE		1		教教	授 授	高村 増本	仁 博		能材料 際科学		
専	磁気デバイス材料学	毎年	JЕ		2		准载	授授授授明	杉 高 手 関 三	論 弘 親 規 斎 司	金 ⁴ 知 金 ⁴	能材料		
	応用電子材料学	毎年	JE		1		教教教准	授授授授	小山 佐藤 吉川 小澤	裕 俊一 彰 祐市	多 金	能材料 元研 研 元研		
門	非平衡物質工学	毎年	JE		1		教教教准	授授授授	加藤 才市田	秀実 淳治 哲武	学 金	祭科学 研		
	先端材料評価学	毎年	JE		1			授授授授	津田 杉山 木口 湯葢	健治 和正 賢紀 邦夫	金 金	研		
科	材料計測学	毎年	JЕ		1		教教	授 授	三原 百生	毅 敦		料シス 元研		
	生体材料学	毎年	JE		1		准	授 教授 教授	成島 森本 上田	尚之 展行 恭介	材料	料シス 料シス 料シス		
	ソフトマテリアル	毎年	JE		1		II	授 教授	山本 森本	雅哉 展行		料シス 料シス		
目	ナノ構造制御機能発現工学	毎年	E		2		教教教准	授授授授	新 須 孫 和 表 表 表 表	淳作 祐司 弘毅 幹彦	知金	能材料 能材料 研 用物理		
	先進鉄鋼工学	毎年	J		2		客員	授 教授 教授	武藤 加藤 三木	泉 徹 祐司	日本	能材料 本製鉄 ごスチール㈱		
	非鉄金属製錬環境科学特論	毎年	J		1		講講講講講講	授授授销制制制制制	柴小福村岡高浅池梅渡田俣山松本橋野信村邊	浩孝博淳秀純 省憲宏幸久之司征一聡爾五滿	多多多住住住三東	元研 元研 元研 元研 反金属鉱山㈱ 反金属鉱山㈱ 対金属鉱土㈱ 計・金属鉱業㈱ お お は は は は は は は は は は は は は		

区	授業科目	開講時期	使用	単		位	担 当 教 員 備 考
分			言語	必修	選択 必修	選択	担 当 教 員 備 考
専	インターンシップ研修				1~2		全教員
門科	材料科学工学特別講義						
Ë	材料科学工学特別研修						
関連科目	本研究科委員会において関連	連科目 と	こして	認めた	もの。		
	金属プロセス工学セミナー	毎年			4		教 授 長坂 徹也 金属フロ 左記のセミナー 准教授 三木 貴博 金属フロ のうちから, 4
車	創形創質プロセス学セミナー	毎年			4		教 授 貝沼 亮介 金属フロ 単位を選択履修 教 授 及川 勝成 金属フロ 准教授 大森 俊洋 金属フロ
門	先端マテリアル物理化学セミナー	毎年			4		教 授 朱 鴻民 金属フロ 教 授 コマロフ セルゲイ 金属フロ 教 授 粕壁 善隆 高度教養教育・学生支援機構 准教授 竹田 修 金属フロ 准教授 吉川 昇 金属フロ
 科	プロセス設計学セミナー	毎年			4		教 授 柴田 浩幸 多元研 准教授 助永 壮平 多元研
目	プロセス制御学セミナー	毎年			4		教 授 古原 忠 金研 教 授 市坪 哲 金研 教 授 埜上 洋 多元研 教 授 高橋 幸生 多元研 准教授 宮本 吾郎 金研 金研 准教授 岡本 範彦 金研 准教授 篠田 弘造 多元研
	金属フロンティア工学修士 研修	毎年		6			全教員

- 所属専攻の専門基盤科目,専門科目および関連科目の単位数合わせて20単位以上,セミナー及び研修を含めて30単位以上を習得すること。
 表中の授業時間は、1週の授業時間数を示し、その配置は変更することがある。
 授業担当教員名は予定者を含んでおり、変更することがある。
 『使用言語』欄のアルファベット記号について J:日本語開講科目 (Lectures given in Japanese) E:英語開講科目 (Lectures given in English) JE: 準英語開講科目 (Lectures prepared for both Japanese and foreign)

製錬・精製の熱力学【TMLMSE501】

2 単位

Thermodynamics of Smelting & Refining

選•必 教 授 朱 鴻民 准教授 三木 貴博

教 授 柴田 浩幸 教 授 植田 滋 准教授 助永 壮平

本講義は、鉄鋼や非鉄金属の金属材料製造や新素材創製に必要な化学熱力学について、すでに学んだ基礎的事項を実際の製錬・精製プロセスへ応用し、それらを熱力学を用いて解析できるレベルにまで高める事を目標とする。前半では、素材製造プロセスを解析する場合の基礎として、多成分系相平衡、反応パスと相解析、電気化学、ポテンシャルダイアグラム、融体・溶液の熱力学・構造・物性(測定法)・溶ルダイアグラム、融体・溶液の熱力学・構造・物性(測定法)・溶・とデル等について説明し、後半では、鉄鋼製錬(製銑・製鋼)や非鉄金属製錬(銅・亜鉛・鉛等のベースメタルやレアメタル)プロセスの、化学熱力学を用いた解析方法についての事例の紹介と演習を行い理解を深める。

材料表面界面科学【TMLMSE503】

2 単位

Materials Surface and Interface Science

選•必 教 授 粕壁 善隆

教 授 正橋 直哉 教 授 和田山智正 准教授 篠田 弘造

固体のバルク材料の性質は固体全体に及ぶ体積的な性質であるのに対し、固体表面では原子配位がバルクとは異なっており、固体内の界面でも原子配列が乱れている。これらの原子配列の乱れは、表面や界面の物性に大きな影響を及ぼすため、表面界面科学と呼ばれる学問領域を形成している。本講義においては、工業的に重要なプロセスにおける種々の表面・界面現象を基礎物性の立場から理解することを自じる種々の表面・界面現象を基礎物性の立場から理解することを自じる種々の表面・界面の熱力学や化対とする。前半では、固体表面の原子配列、表面・界面の熱力学や化学結合、表面の機能等について講義する。さらに、後半においては固体表面を評価するためのイオンを用いた分析法や薄膜成長等について講義する。

量子化学【TMLMSE505】

1単位

教 授 久保 百司

Quantum Chemistry

材料の機能や特性の多くは、材料中の原子と電子の振る舞いを知ることによって理解することができる。逆に、材料中の原子と電子の振る舞いを理解できれば、今より高い性能・機能を持った材料を理論的に設計することが可能である。ここで、電子の挙動を理解するには、量子化学の概念と手法の理解が必要である。量子化学の基本はシュレーディンガーの波動方程式であり、これを基礎に分子軌道法が発展した。コンピュータを用いて、分子軌道法により材料の電子状態を解くことで、材料の機能や特性を理解、さらには予測することができる。本講義では、量子化学を習得するための基礎として、①原子の構造とスペクトル、②分子軌道法、③二原子分子の分子オービタル、④多原子分子の分子オービタル、⑤ヒュッケル法、⑥固体のバンド理論について学習する。教科書:アトキンス物理化学(上)東京化学同人

疲労と破壊の材料学 [TMLMSE507]

2 単位

Fatigue Strength and Fracture of Materials 選•必 教 授

野村 直之 教 授 吉見 享祐 教 授 三原 毅

材料の疲労現象と疲労強度, 破壊の力学と破壊じん性, 疲労き裂の発生機構と進展機構の基礎について、材料の微 視的な現象を理解するだけでなく、巨視的な材料の変形・ 破壊が微視的な現象とどのように関係しているかという視 点で講述する。これらの考え方が材料工学で応用できるこ と, 巨視的な破壊力学パラメータが構造物の安全性・信頼 性確保に活かせることを解説する。

材料構造評価学 【TMLMSE509】

1単位

Structural Characterization of Materials

教 授 杉山 和正 選•必 教 授 今野 豊彦 講 師 赤瀬善太郎

本授業の目的は、X線回折および電子回折を用いた物質構造を決定する方法論に関しての理解を目指す。先端材料評価学を学ぶための基本事項の理解を目標とし、授業項目は大きく3つのパートから構成されて

第一部:物質構造のヒエラルキーのなかで周期的な原子配列を基盤とする結晶学の初歩を解説する。 第二部: X 線の発生および回折装置の原理を解説し、X 線結晶構造解

新二郎・A 旅の主張など自動を置いた生きが成立。 A 旅船間報 析の基礎および解析結果の利用法を説明する。 第三部:電子顕微鏡の仕組みと結像原理に関して解説し、原子配 観察、微小領域の分析法など周辺技術に関して解説する。 原子配列の

製錬・精製の速度論【TMLMSE502】

1単位

Reaction Kinetics in Metallurgical Processes

選•必

教 授 埜上 洋 教 授 葛西 栄輝 教 授 コマロフ セルゲイ

各種素材の製錬・生成は熱力学的考察の下にプロセス設計がなされるが、実際のプロセスにおいては、これに加えて化学反応、物質移動や熱移動など速度論的な制約を受けるため、実プロセスに含まれる諸現象の中から律速段階となる過程を抽出し、これを定量的に評価する必要がある。本講義では、実際の製精錬プロセスの中で生じている現象に対して、これまで学習してきた反応速度論や移動速度論がどの様に適用されているかを紹介し、速度論による現象の表現、解析および理解の手法について学ぶ。具体的には反応器の形式と物質収支・滞在時間解析および気固・気液不均一反応の速度解析等について書業する。 ついて講義する。

相変態論【TMLMSE504】

2 単位

Theory of Phase Transformations

選•必 教 授 大谷 博司 教 授 貝沼 亮介 教 授 市坪 哲 准教授 大森 俊洋

材料に生じる各種相変態の体系的な理解を目的とし、相変態の素過 程に関連した基礎的事項について、主にミクロ組織の熱力学に立脚した観点で講義を行う。具体的な内容は以下の通りである。

- 1. 状態図と自由エネルギー(物質の自由エネルギー,正則溶体近似と 相平衡)
- 相 円 例) 2. 拡散現象(現象論的拡散方程式,活性化エネルギー) 3. 界面の熱力学(界面エネルギーの起源、粒界偏析,結晶粒成長) 4. 拡散型変態(結晶核生成,規則-不規則変態) 5. 変位型変態(マルテンサイト変態,形状記憶と超弾性)

材料電気化学【TMLMSE506】

2 単位

Materials Electrochemistry

選•必 教 授 朱 鴻民 教 授 武藤 泉 准教授 竹田 修 准教授 優

電極/電解質系においては、電極界面を通しての電子移動過程を伴う化学反応が生ずる。このような反応は電極反応と呼ばれ、エネルギー変換、情報変換および物質変換において重要な役割を果たしている。ここでは電極反応の基礎概念と応用技術について学ぶことを目的とする。主な内容は、金属および半導体電極などに関する電気化学の平衡などに関する電気化学の平衡を表します。 論と速度論、電気化学反応を利用した物質合成の基礎と応

格子欠陥論【TMLMSE508】

2 単位

Lattice Defects Theory

教 授 吉見 享祐 准教授 関戸 信彰

材料の特性は、材料中に内在する格子欠陥の種類や濃度に強く依存する。格子欠陥は、材料の組成や合成・加工プロセスで常に一定量が導入されるだけでなく、使用環境(温度,圧力, ひずみ速度, 放射線量等々)によって時々刻々と種類や濃度が変化していく。したがって、材料の優れた特性を十分に引き出すとともに、長期にわたって安定的に特性を維持するための材料設計には、格子欠陥の種類や濃度とその経時変化, そしてそれらの測定法に関する知識と理解が必要不可欠である。そこで本講義では、材料中に生成する点欠陥、線欠陥(転位), 面欠陥の構造や物理的性質を概説すると共に、それら格子欠陥の材料中での振舞いや材料特性に与える影響を紹介する。また、照射損傷など実用的な観点から格子欠陥がとりわけ重要な役割をする事例や、格子欠陥濃度の測定方法についても紹介する。 欠陥濃度の測定方法についても紹介する。

固体電子論【TMLMSE510】

2 単位

Physics of Electrons in Solids

選•必 教 授 佐藤 俊一 教 授 新田 淳作 准教授 好田

近年の材料に利用されている多様な機能性の解明と制御のためには、固体中の電子、フォノン、フォトンの挙動と関連する固体物性理論の基礎を理解する事が必須である。熱伝導、電気光学効果、超伝導等を題材として以下の

する事が必須である。熱伝導,電気元子知来、超広等すを超ねことでいる 項目を講述する。 (1) フォノンの分散関係 I, (2) フォノンの分散関係 II, (3) 光学フォノン と音響フォノンによる比熱。(4) フォノンエネルギーの量子化。(5) 非調和 効果に基づく熱膨張と熱応導。(6) 光の伝搬・分散、(7) 固体による光の散乱。 (8) 電気光学効果。磁気光学効果。非線形光学効果。(9) 超伝導の発見から応用。(10) 電子一フォノン相互作用、クーバー対。(11) BCS 理論概要(臨 界温度,超伝導ギャップ)。(12) ロンドン方程式、超伝導臨界電流、超伝導 臨界磁場)。(13) ジョセフソン効果。(14) 予備

結晶物理工学【TMLMSE611】

Crystal Physics and Engineering

選•必

授 高村 教 仁 教 授 山根 久典 授 吉川

1単位

材料の機械的・電気磁気的・光学的特性など種々の物性は その結晶構造の対称性や局所構造と密接な関連性を示す。本 講義では、結晶の対称性の表現や物性のテンソル表現につい て学び、主として機能性セラミックスの電気(誘電)的性質 や光学的性質の理解を深める。さらに、機能性セラミックス における欠陥の記述方法や制御方法について学び、それらが 関与する種々の物性についての理解を深める。

非鉄金属プロセス学【TMLMSE613】

1単位

Noufirrous Extractive Metallurgy

選•必 教 授 長坂 徹也 教 授 朱 鴻民 准教授 竹田

多様な非鉄金属の製錬はそれぞれの金属とその化合物の化 学的・物理的性質を利用して行われる。操業温度は室温から 2000℃を越える高温まで、関連する反応相は気、液、固の三相とそれらの混合相、反応媒体は水溶液から溶融塩やスラグ 還元法としては炭素、水素および活性金属などの還元 剤を用いた熱還元から電気分解まで、多岐にわたる。それら のプロセスの基礎原理や特徴を電位 - pH 図や化学ポテンシャ ル図などを通して解説するとともに、最近の技術の進展につ いて講義する。

応用鋳造工学【TMLMSE615】

1単位

Advanced Casting Technology

選•必

教 授 加藤 秀実 教 授 藤原 航三

鋳造は代表的な金属素形材加工法である。各種エンジンや IT 関連部品の製造に必須の技術として様々な鋳造プロセスが 開発されており、目的に応じて使い分けられている。鋳造品 に要求されるコストと品質を確保するためには、製品毎に鋳 造条件を最適化する必要がある。本講義においては、最適化の際の基礎となる連続体の力学の基礎、および関連する数値 解析技術について講義すると共に、代表的な鋳造法における 鋳造欠陥対策としての鋳造条件最適化事例を紹介することで、 産業界における鋳造工学の応用について講義する。

応用塑性加工学【TMLMSE617】

1単位

Advanced Plastic Forming

選●必

教 授 及川 勝成 教 授 千葉 晶彦

工業製品の要素となる部品の多くは素材を加工成形して作 られるが、これらの素材の加工成形の多くは塑性変形を用いる加工(塑性加工)によってなされる。形を作り上げる方法 としての塑性加工は切削や切断などの他の方法と異なり、加 工時間が短く、材料のロスが少ない加工方法である。塑性加 工を理解するには、塑性力学の概念と手法を理解することが 必要である。本講義では、塑性力学の基礎原理を理解すると 金属材料の代表的加工法である塑性加工について, 代表的な塑性加工技術の特徴を理解する。

応用接合工学【TMLMSE619】

1単位

Advanced Welding and Joining Engineering

選•必 教 授 佐藤

材料システムの構築に必須な基礎的造形技術である溶 接・接合プロセスにおける基礎と諸問題について述べ、接 合部や接合界面の最適な材料ミクロ・ナノ組織制御および 諸特性制御について講義する。

- (1) 接合法の原理と機構(接合法の分類,原理,貴校, 適用性および問題点など)
- (2) 接合部・接合界面の材料科学(化学反応, 熱影響と 相変態および組織変化、諸特性とそれらの制御および設計)

鉄鋼プロセス学【TMLMSE612】

Iron and Steelmaking Process

選•必

教 授 埜上 洋 教 授 柴田 浩幸 授 植田

あらゆる産業を支える基盤素材である鉄鋼の製錬プロセスは、鉄鉱石を還元する高炉、溶銑を精錬する製鋼、溶鋼を凝固させる連続鋳造から成り立っており、洗練されたプロセス制御により効率的な大量生産がおこなわれている。本講義では、これまで学習してきた熱力学、反応速度、移動速度、凝固等の基礎を各プロセスで起こっている事象に対して応用し、それらを制御するための解析方法について学ぶ。具体的には、固入液/気体を考慮した熱・物質移動に基づく高炉の数値解析モデル、種々の元素の酸化・還元の同時進行を解析できる競合反応モデルによるスラグ/メタル反応の制御方法、連続鋳造プロセスの概要と、凝固・伝熱・流動を考慮した初期凝固現象の解析等を講義する。

応用構造材料学【TMLMSE614】

2 単位

1単位

Advanced Structual Materials

選•必 正橋 直哉 教 授

教 授 古原 准教授 千星 聡 准教授 宮本 吾郎

材料の持つ特性は内部組織に大きく依存することから、組 織の制御は材料開発において重要な課題である。 構造用金属材料として代表的な鉄鋼および非鉄材料を事例と して、組織変化を司る相変態、析出、再結晶などの基本現象、 合金における添加元素の効果,加工・熱処理プロセスの影響 など、組織制御の基本原理を解説する。また、組織因子と材 料特性との関係についても、強度、延靭性など機械的特性を 中心に紹介する。

応用腐食防食学【TMLMSE616】

1単位

Advanced Corrosion Engineering

教 授 武藤 泉 准教授 菅原 優

腐食の現象や形態は多種多様であるが、その機構を理解し たらえで適切な防食対策を施すことで、損傷を防止すること ができる。これは大きな経済効果をもたらすのみならず環境 負荷の低減にもつながる。ここでは腐食防食と耐食材料に関 する知識を修得することを目的とする。主な内容は、腐食の 電気化学的機構,不働態,耐食合金,各種腐食現象とその原因, 防食方法等である。

応用粉体加工学【TMLMSE618】

1単位

直之

Applied Powder Processing and Powder Metallurgy

選•必 教 授 野村

金属・セラミックス粉末の特徴を把握し、粉体および焼結体として機能を発現させるために必要な基礎について講義する。粒子と粉体の特性や機能、焼結に関する理論を理解し、それぞれの製造プロセスや評価方法について解説する。機能性粒子設計や粒子配列による機能発現等の応用例についても数金する。下記の原見について課業をを言う。 性位寸設計 や位寸配列による機能先現等の 紹介する。下記の項目について講義を行う。 1. 粉末の製造と特性評価 2. 粉体の混合,造粒と各種成形 3. 焼結の基礎と各種焼結技術 4. 焼結体の評価とその応用

数値材料プロセス学【TMLMSE620】

2単位

Numerical Methods for Materials Processing

教 授 埜上 洋 教 授 コマロフ セルゲイ

工業製品には、多種多様な素材・素形材が用いられている。素材・素形材に求められるコストと品質を確保するためには、材料プロセスパラメータを最適化することが重要である。材料プロセス中に発生する物理現象は、非定常かつ非線形であることが多く、プロセスパラメータの最適化には数値解析技術が必須である。基本となるプロセスシミュレーションには、商用ソフトウェアパッケージが用いられているが、採用されている数値解析モデルの原理原則をよく理解すると同時で、大きの問題といるが、採用されている数値解析モデルの原理原則をよく理解すると同時で、大きの問題といるが、採用されている数値解析モデルの原理をよくまままで、大きによった。 に、モデルの限界をわきまえて活用することが重要である。本講義では、基本となる数値解析技術の基礎と、それらの材料プロセス技術へ の応用について講義する。

弹塑性力学【TMLMSE621】

1単位

1単位

Mechanics of Elasticity and Plasticity

選•必

教 授 成田 史生

本講義では、材料・構造システム設計のための弾性論と 材料の塑性力学に関する基礎的事項について学習する。特 に、局所的に大きなひずみを受ける材料の応力状態や変形 挙動、塑性領域の拡大に関する知識を習得し、それを数理 解析に結びつけるための方法に加え、材料・構造システム のぎりぎりの性能維持能力を把握する方法を学ぶ。また、 塑性加工の解析法などについて理解を深める。

エネルギー変換・機能材料学【TMLMSE623】

Energy Conversion and Functional Materials

選•必

教 授 高村 仁 教 授 増本 博

現在, 燃料電池, 二次電池などエネルギー変換・貯蔵のた めの機能材料が注目を集めている。本講義では、それら機能 材料の基礎と応用について理解を深める。具体的には、燃料 電池・二次電池の基礎と応用(電解質・電極材料),水素など エネルギーキャリア製造のための触媒材料の設計概念、圧電 材料・熱電材料など各種エネルギー変換材料の原理と応用, ナノテクノロジーのエネルギー変換デバイスへの応用等につ いて学ぶ。

応用電子材料学【TMLMSE625】

1単位

Materials Science of Electronic and Optoelectronic Devices 教 授 小山 選•必 裕

教 授 佐藤 俊一

教 授 吉川 彰 准教授 小澤 祐市

- #E教代文 小学 仲印

 半導体デバイスやレーザ、シンチレーション検出器等の動作原理について、それ
 らを実現する電子材料の物性と結晶成長技術、発現する機能と応用について下記の
 項目を解説する。
 1. 半導体デバイスにおける課題 (Material Issue of Semiconductor Devices)
 2. 電子・光デバイスの高速・高周波動作 (Ultra-fast and High-frequency Semiconductor Electronic and Photonic Devices)
 3. 半導体材料の薄膜成長とデバイス特性からの結晶評価 (Crystal Growth and Semiconductor Device Epitaxy & Device Grade Evaluation of Semiconductor Crystals)
 4. レーザの動作原理 (Operation principle and fundamentals of laser)
 5. レーザ応用 (Laser Applications)

先端材料評価学【TMLMSE627】

Advanced Materials Characterization

選●必 教 授 杉山 和正

准教授 木口 賢紀 准教授 湯葢 邦夫

教 授 津田 健治

X線および電子線を用いた先端材料評価手法について解説 する。X線回折法と放射光源を用いた物質の原子レベルの構 造解析、収束電子解析法による対称性(点群・空間群)決定 と局所結晶構造解析、電子線ホログラフィーによる材料の電 磁場の解析、高次元空間と非周期結晶の構造、高分解能電子 顕微鏡法に依る複雑構造化合物の構造解析,走査型透過電子 顕微鏡の基礎と応用,分析電子顕微鏡法による材料組成および電子状態分析について取り上げる。

生体材料学【TMLMSE629】

1単位

1単位

Biomaterials 選•必

教 授 成島 尚之 准教授 森本 展行 准教授 上田 恭介

超高齢社会において生体材料への期待は大きく、様々な 機能が要求されている。人工臓器や治療に用いられる金属 系, セラミックス系, 高分子系生体材料の設計, 物理的・ 力学的・化学的・生物学的特性、硬組織・軟組織との生体 反応に加えて、それらの評価方法に関しても講義する。

計算材料学【TMLMSE622】

1単位

Computational Materials Science

選•必

教 授 大谷 博司

教 授 久保 百司 准教授 Rodion Belosludov 准教授 鈴木 通人

材料の機能や強度などの特性は、電子の振る舞いや原子の配列などのミクロスケールの情報が、内部組織を介して、マクロなスケールに伝達することによって発現するマルチスケール現象であり、非線形性が極めて強い。そのため、それぞれのスケールで主要な役割を果たす要素の振る舞いを記述する学理への理解がきわめて重要となる。本講義では、特にミクロスケールにおける電子や原子の振る舞いを理解する為に必要な量子力学と統計力学の基礎知識を講述し、これらをより大きなスケールの計算につなげるための代表的な計算手法として、① Hartree-Fock and Post-Hartree-Fock methods、② DFT method, ③ all-electron mixed basis approach、④ Molecular Dynamics method、⑥ Calculation of Phase diagrams (CALPHD) method, ③ assessment method of thermodynamic parameters 等を紹介する。

磁気デバイス材料学【TMLMSE624】

2 単位

Magnetic Device Materials

選•必 教 授 高梨 弘毅 准教授 関 剛斎 教 授 杉本 諭 准教授 手東 展規 講師俳 三谷 誠司

電子の運動によって生み出される物質の磁気的性質を利 電子の運動によって生み出される物員の磁気的性質を利用して多くの磁性材料が開発され、様々な分野に応用されている。本講義では、磁性・磁気工学の基礎を説明した後、現在、種々のデバイス等で利用されているハード磁性材料、ソフト磁性材料について概説する。さらには、人工格子、電子のスピンと電荷を制御するスピントロニクスの物理やその材料・デバイスに関わる基本特性・動作原理について も概説する。

非平衡物質工学【TMLMSE626】

1単位

Nonequilibrium Materials

選•必 教 授 才田 淳治 教 授 加藤 秀実 教 授 市坪 哲 准教授 和田 武

長範囲な周期的原子配列を持たないアモルファス相や準結晶および粒界が高体積分率を占めるナノ粒径結晶合金系の特徴、急速凝固、気相凝縮、固相反応、徐冷凝固などの非平衡相作製プロセス、これらの新規構造物質の構造の特徴、機械的、物理的、化学的基本的性質、バルク金属ガラスの特徴および諸物性、ニュートン流動利用高速超塑性加工等を諧義すると共に、高強度・靭性材料、軟磁性材料、高周波透磁率材料、永久磁石材料、高磁歪材料、高耐食性材料、燃料電池材料、触媒材料等の高機能材料としての実用化の現状を紹介する。

材料計測学【TMLMSE628】

1単位

Evaluation of Materials

選•必

教 授 三原 毅 教 授 百生 敦

金属材料、圧電材料、ナノ材料、有機材料、複合材料な ど、あるいはそれらを用いたデバイスや構造部材の高度利 用と安全確保に必要な計測・評価方法に関し、X線や超音 波を用いる手法を中心に、その原理から応用技術について 学ぶ。X線の回折・散乱・分光・イメージング、弾性波の 伝搬、応力計測などについて理解を深める。

ソフトマテリアル【TMLMSE630】

1単位

Soft Materials

選•必

教 授 山本 雅哉 准教授 森本 展行

ソフトマテリアルには液体、ポリマー、ゲル、コロイド粒 子、液晶そして多くの生物由来物質が含まれる。これらのソ フトマテリアルに共通する特徴として、その構成分子が分子 間力によりメゾスコピックなスケールを有した構造を形成す る。この結果、スケールに依存したやわらかさを示すととも

に、ゆっくりとしたダイナミクスが現れる。 本講義では、これらのソフトマテリアルに特徴的な熱力学 とダイナミクスについて理解する。またこれらの用途例につ いても概説する。

ナノ構造制御機能発現工学【TMLMSE631】

Nanostructures and Function Control in Materials

選・必 教 授 須藤 祐司 教 授 新田 淳作 教 授 高梨 弘毅 准教授 大兼 幹彦

2単位

聡

現在の材料学では、ナノスケールで物質の構造や組織を 制御して、新しい機能を発現させることが重要な課題となっ ている。本講義では、ナノスケールでの構造・組織制御に 関する物理学・材料学的基礎から説き起こし、さまざまナ ノ構造に基づいて発現する新機能(主に電磁気機能)を紹 介し、さらにその機能がどのようにデバイスに応用される かを、金属や半導体という従来の枠組みを超えて講義する。

非鉄金属製錬環境科学特論【TMLMSE633】

Non-ferrous Metallurgical and Environmental Science and Engineering

授授 選•必 教 柴田 浩幸 小俣 博之 教 授 数 福山 講師(非) 秀征 村松 淳司 教 授 岡本 講師(非) 高橋 純一 講師(非) 浅野 梅村 憲五 講師俳 池信 省爾 講師(非) 講師(非) 渡邊

網、ニッケルなどの非鉄素材は高度に発達した現代社会において不可欠である。一方で、利用できる資源は限られており、高いレベルでの資源の処理や製錬技術の要求は常に高い。非鉄資源から素材へ、さらにリサイクルまでを一貫して理解することとなる。素材の製錬に関わる基礎の部分を大学教員が講義し、実際の工業プロセスについて は企業講師が分担して講義する。講義は2日間の集中講義で行う。

材料科学工学特別講義【TMLMSE835】

Special Lectures on Material Science and Engineering 選•必 授業担当教員

専門分野及び関連分野における重要な学問研究分野を紹 介し、修士研修に関する専門的知識の増進及び学問の創造 発展を目指す特別講義である。

金属プロセス工学セミナー【TMLMSE637】 4 単位.

Seminar on Metallurgical Process Engineering

選・必 教 授 長坂 徹也 准教授 三木 貴博

金属プロセス工学における修士論文研究に関連する最新 の国内外の諸研究を対象とし、その調査、紹介法を習得さ せ、それらに基づいた討論・演習を行う。

先進鉄鋼工学【TMLMSE632】

Advanced Steel Engineering

選•必

教 授 武藤 泉 客員教授 加藤 徹 客員教授 三木 祐司

2 単位

鉄は地球上で最も使われている身近な素材であり, 制御 された大規模プロセス技術で製造される中で、その材料組織はナノテクノロジーで評される原子レベルの解析や制御 が行われている素材である。その最先端技術の基礎的側面 を学ぶことで、大学で学ぶ材料科学やプロセス科学の価値を知り、基礎科学の連関と応用力を学ぶ。内容は、鉄鋼プロセス技術と環境、鉄鋼製品材料の組織と表面の制御、そ して計算科学を含めた最先端の評価技術である。

インターンシップ研修【TMLMSE934】

1~2単位

Internship training

全教員

2週間~1カ月程度,実地演習として企業にて実習,研 究活動を行う。

材料科学工学特別研修【TMLMSE836】

Special Seminar on Material Science and Engineering 授業担当教員

専門分野及び関連分野における重要な学問研究分野につ いて、学内外のセミナーや実地演習を通じて、高度専門知 識の総合化による問題解決能力を習得する。

創形創質プロセス学セミナー【TMLMSE638】 4 単位

Seminar on Materials Forming and Structural Control

選●必

教 授 貝沼 亮介

教 授 安斎 浩一 教 授 及川 勝成 准教授 大森 俊洋

創形創質プロセス学グループにおける修士論文研究に関 連する最新の国内外の諸研究を対象とし、その調査、紹介 法を習得させ、それらに基づいた討論・演習を行う。

先端マテリアル物理化学セミナー【TMLMSE639】 4単位

Seminar on Advanced Materials Physical Chemistry 選・必 教 授 朱 鴻民

教 授 コマロフ セルゲイ 教 授 粕壁 善隆 准教授 竹田 修 准教授 吉川

先端マテリアル物理化学グループにおける修士論文研究 に関連する最新の国内外の諸研究を対象とし、その調査, 紹介法を習得させ、それらに基づいた討論・演習を行う。

プロセス設計学セミナー【TMLMSE640】 4単位

Seminar on Material Processing Design

選•必 教 授 柴田 浩幸 准教授 助永 壮平

プロセス設計学グループにおける修士論文研究に関連す る最新の国内外の諸研究を対象とし、その調査、紹介法を 習得させ、それらに基づいた討論・演習を行う。

プロセス制御学セミナー【TMLMSE641】 4単位 金属フロンティア工学修士研修【TMLMSE642】 6単位 Seminar on Process Control for Materials Master Course Seminar on Metallurgy Processing 必修 全教員 選•必 教 授 古原 忠 金属プロセス工学、創形創質プロセス学、先端マテリア 教 授 市坪 哲 洋 教 授 埜上 ル物理化学,プロセス設計学,プロセス制御学の各グループに所属し、研究,研究発表,討論,文献紹介などの実験 教 授 高橋 幸生 准教授 宮本 吾郎 准教授 岡本 範彦 准教授 篠田 弘造 及び演習を行う。 プロセス制御学グループにおける修士論文研究に関連す る最新の国内外の諸研究を対象とし、その調査、紹介法を 習得させ、それらに基づいた討論・演習を行う。